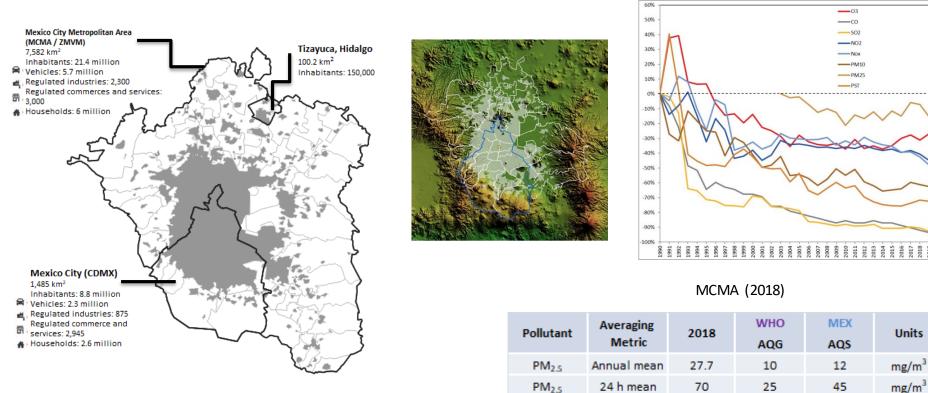
Integrating health and economic benefit analysis in air quality management in Mexico City

Stephanie Montero Lead Coordinator of Health and Air Quality Projects

Directorate General for Air Quality Secretariat for the Environment (SEDEMA), Mexico City


GOBIERNO DE LA CIUDAD DE MÉXICO CIUDAD INNOVADORA Y DE DERECHOS

Outline

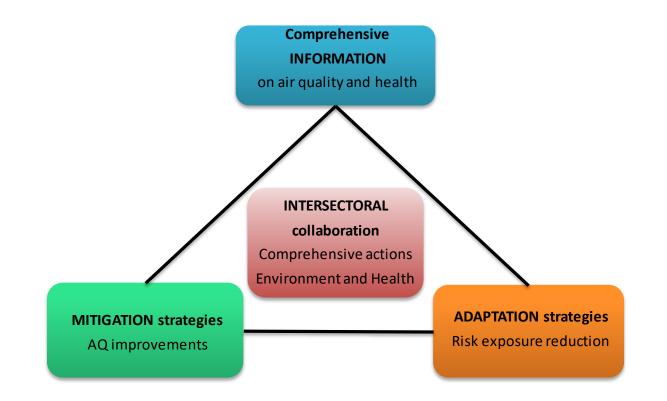
- 1. Context: The Mexico City Metropolitan Area (MCMA)
- 2. Integrating health in air quality management in the MCMA
- 3. Health and economic benefit analysis in the MCMA
- 4. Examples of HIA in the MCMA
- 5. Recommendations for other cities

1. Context – The Mexico City Metropolitan Area (MCMA)

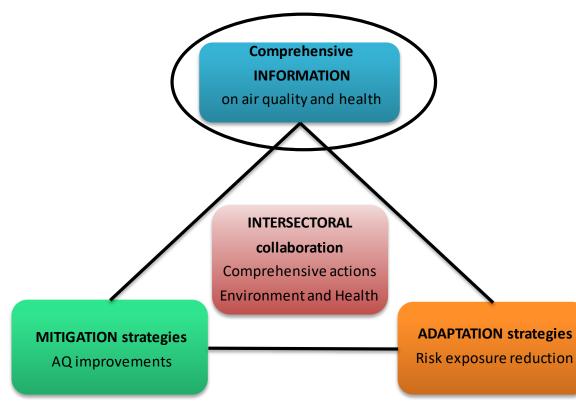
1990 – 2019 trend

O₃

8 h max


120

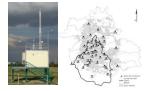
50


70

dag

2. Integrating HEALTH in AQ management in Mexico City

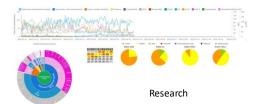
2. Integrating HEALTH in AQ management in Mexico City INFORMATION



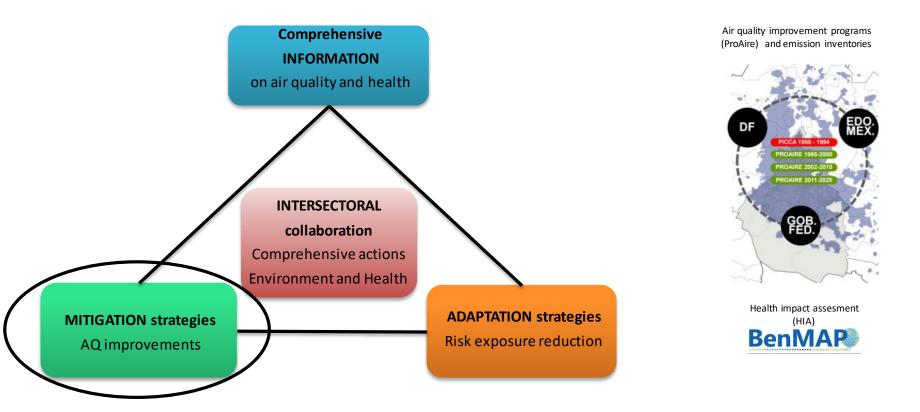
National AQ standards and WHO AQ guidelines

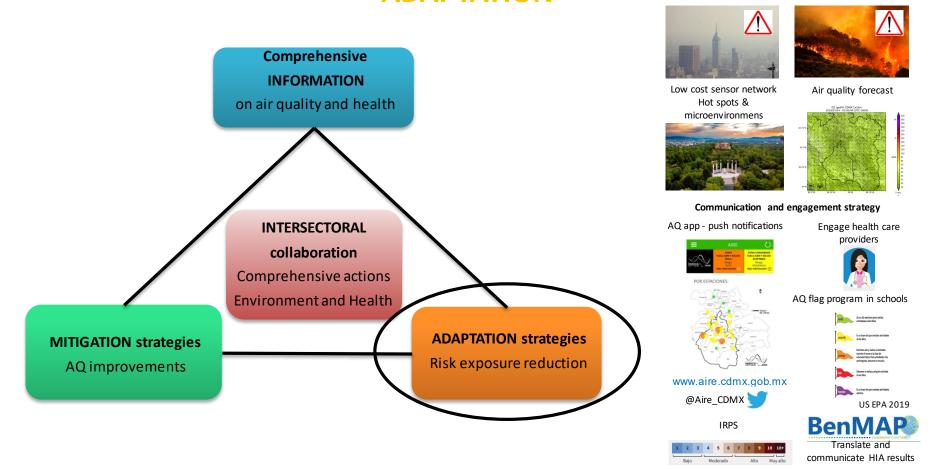
Air Quality Guidelines

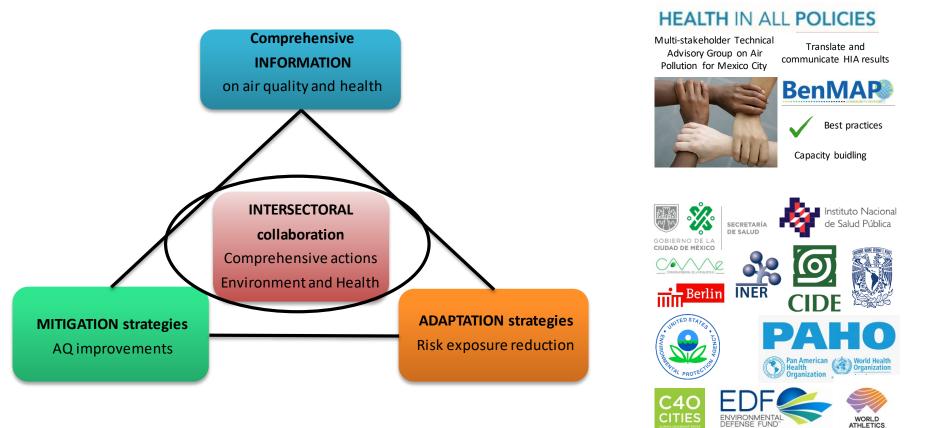
AQ monitoring



AQ modeling & scenarios


Health impact assesment (HIA)


Epidemiological surveillance system


2. Integrating HEALTH in AQ management in Mexico City MITIGATION

2. Integrating HEALTH in AQ management in Mexico City ADAPTATION Protocolo for air pollultion episodes Early warning system for wildfires

2. Integrating HEALTH in AQ management in Mexico City INTERSECTORAL COLLABORATION

Finding the ways that work

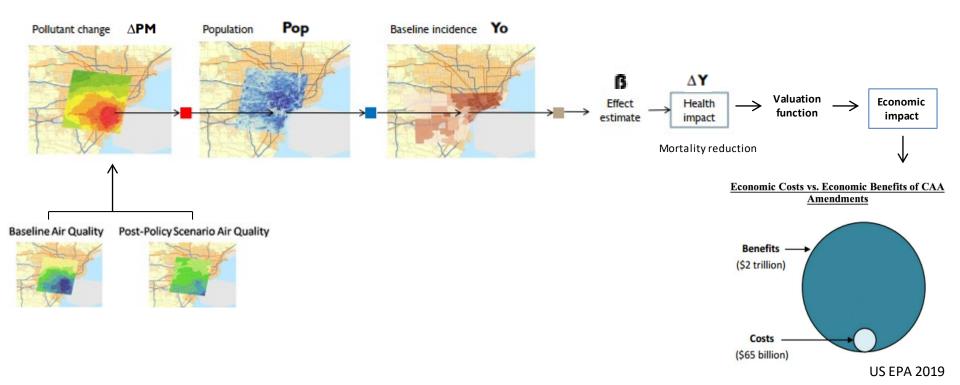
3. Benefit analysis of AQ improvements in the MCMA using the BenMAP-CE software

Main goal

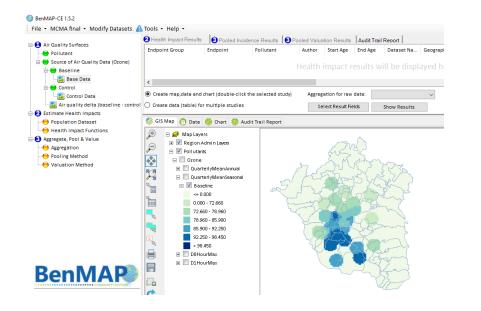
Integrate health impact assessment into AQ management in Mexico City as a key tool to guide policy design, implementation and evalution.

Estimating health and economic benefits of AQ improvements The process

- 1. What specific policy **questions** would be useful to answer?
- 2. What are the **steps** to calculate health impacts?
- 3. What **data** is needed to estimate benefits?
- 4. Which **institutions** could **participate** to strengthen the project?
- 5. Which are the potential data **sources** and how to **process** data inputs?
- 6. Which **options** to select when **running the analyses** in BenMAP?
- 7. How to be **transparent** and allow analysis **replicability**?
- 8. How to **translate and communicate results** to key stakeholders?
- 9. Which **future analyses** should we consider?
- 10. How to integrate health impact analysis in AQ management?


Estimating health and economic benefits of AQ improvements Policy questions

- 1. What are the **current** health and economic effects of air pollution in the MCMA?
- How have changes in air pollution contributed to changes in health outcomes in the MCMA (ProAire 2010-2020)?
- What are the health and economic benefits of attaining the national AQ standards, the
 WHO AQG and a 15% reduction in air pollution in the MCMA?
- What are the health and economic benefits in 2024 and 2030 of implementing the next
 ProAire (2021-2022)?


Main focus on PM2.5 and ozone

Estimating health and economic benefits of AQ improvements Steps to calculate health and economic impacts

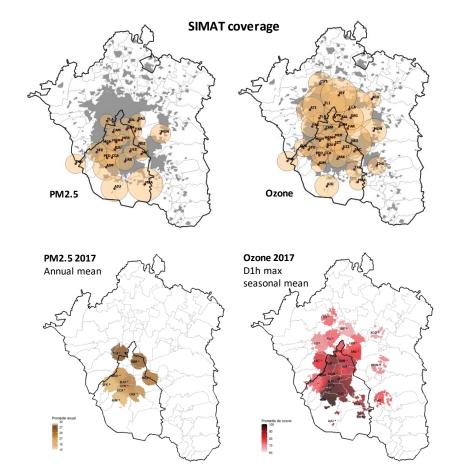
ΔY =Yo (I-e^{-βΔ PM}) *Pop

Estimating health and economic benefits of AQ improvements Data inputs

2016 - 2030 Modify Datasets \times MCMA Available Setups \sim Add Delete Grid Definitions Monitor Datasets Pollutants SIMAT 03_1hmax_seasonal MCMA 1 x 1 km Ozone MCMA AGEB PM2.5 SIMAT 03 3 year 1h seasonal mean MCMA municipalities SIMAT 03_3 year_8h_annual_2016-201 MCMA outline SIMAT O3 8hmax annual MCMA states SIMAT PM2.5 75% SIMAT PM2.5 3 year mean 2016-2018 Manage Manage Manage Incidence/Prevalence Rates Population Datasets Health Impact Functions 2016 25UP MCMA MCMA AGEB 25UP GBD Integrated Exposure Response ~ 2016 30UP MCMA MCMA AGEB 30UP GEMM function 2018 2016 5Ybin MCMA MCMA AGEB 5-year-age-groups PM2.5 Short term 2017 25UP MCMA MCMA municipalities 25UP PM2.5 long term 2017 30UP MCMA MCMA municipalities 30UP Turner 2016 2017 5Ybin MCMA MCMA municipalities 5-year-age-grou Manage Manage Manage Variable Datasets Inflation Datasets Valuation Functions VSL Mexico 2019 Mexico 2019 baseline Manage Manage Manage

Aim for the finest resolution and disaggregation possible.

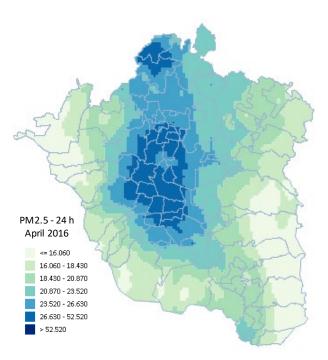
Develop a setup for Mexico City with data for several years.

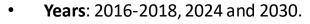

a. Pollutant change /AQ data

MONITOR DATA

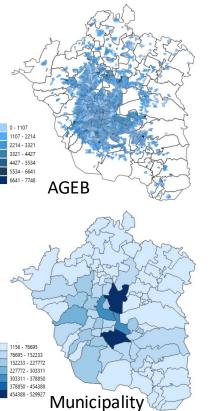
- Years: 2016 to 2019, 2016-2018
- **Source**: SEDEMA's AQM network (SIMAT)
- Sufficiency criteria: 75% valid data
- Datasets: daily data for PM2.5 (24 h mean) and ozone (1 and 8 h max)
- Coverage: varies by station
- Counterfactual scenario: Background concentration / NOM/ WHO AQG

Decisions within BenMAP


- Grid definition: AGEB (Basic geostatistical area) or 1 x 1 km.
- Interpolation methods: Voronoi neighbour averaging (VNA) + inverse distance squared weighted (IDW²).
- Maximum neighbour distance: 5 km for PM2.5 and 5.5 km for ozone.


a. Pollutant change /AQ data

MODEL DATA


- **Resolution:** 1 x 1 km
- Coverage: the whole of the MCMA
- Datasets: daily data
 - PM2.5: 24 h mean
 - Ozone: 1 and 8 h max
- **Periods**: several scenarios for:
 - April 2016 (current ProAire)
 - 4 weeks in 2016 for the next ProAire (assumption: representative of the year)
 - o ...
- Source: SEDEMA

b. Population data

- Age groups: 0-0, 1-4, 5-9...65+.
- Sources:
 - The National Institute of Statistics and Geography's (INEGI)
 2010 Census (AGEB).
 - The National Population Council's (CONAPO) population projections 2015-2030 (municipality).
- Resolution:
 - Basic geostatistical area (AGEB) level.
 - Municipality level.
- **Combining datasets** for achieveing the finest resolution.

Population

Air quality

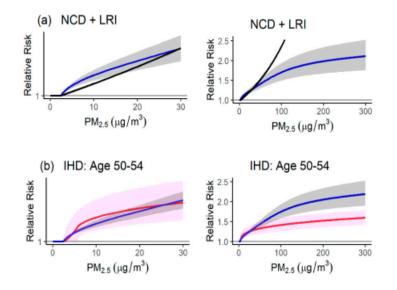
PM2.5 - 24 h

April 2016

<= 16.060

16.060 - 18.430 18.430 - 20.870 20.870 - 23.520

26 630 - 52 520

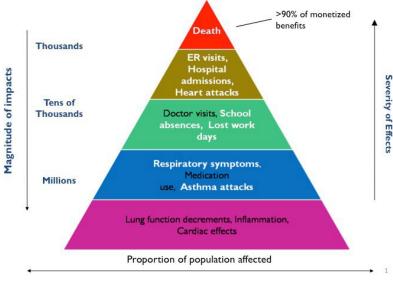

> 52.520

c. Baseline incidence

- Years: 2016-2018, 2020, 2024 and 2030.
- **Resolution**: municipality level.
- All-cause, non-accidental and cause-specific mortality :
 - Ischaemic heart disease
 - Stroke
 - COPD
 - Lung cancer
 - Lower respiratory infections
- Age groups: 0-0, 1-4, 5-14, 15-24, 25-34, 35-44, 45-54, 55-64 and 65+.
- **Sources**: INEGI (observed mortality) and CONAPO (mortality projections).
- Projected to achieve a **finer disaggregation**: cause-specific mortality.

				HUMAN H	EALTH EFFE	CTS			
			2017 SO _x Health	2016 NO _x Health	2020 Ozone	2010 CO	2019 PM		
		Indicator	SO ₂	NO ₂	O3	со	PM _{2.5}	PM _{10-2.5}	UFP
Health Outcome	Mortality	Short-term exposure							
		Long-term exposure							
	Respiratory	Short-term exposure							
		Long-term exposure							
	Cardiovascular	Short-term exposure							
		Long-term exposure							
	Reproductive	Long-term exposure Developm	pregnancy, and	Fertility, pregnancy, and reproduction	Fertility and reproduction		Fertility and reproduction	Fertility and reproduction	Fertility a reproducti
			Birth outcomes Development	Birth outcomes	Pregnancy and Birth outcomes		Pregnancy and Birth outcomes	Pregnancy and Birth outcomes	Pregnancy a Birth outcom
			al outcomes	Developmental outcomes	Developmental outcomes		Developmental outcomes	Developmental outcomes	Developmen outcomes
	Cancer	Long-term exposure							
	Metabolic Effects	Short-term exposure							
		Long-term exposure							
	Central nervous system	Short-term exposure							
		Long-term exposure							

d. Effect estimates

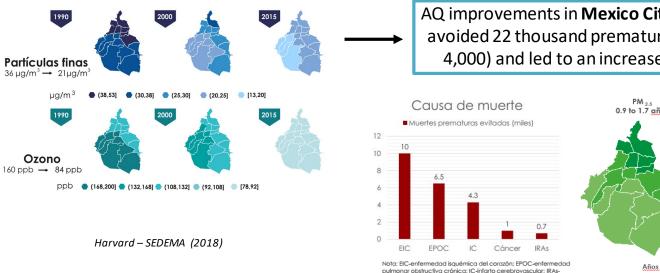

Relative risk by PM2.5 concentrations below 30 μ g/m3 (left side) and over the global concentration range (right side): Adapted from Burnett et al (2020)

Black: Log-linear Red: Integrated exposure response model (IER) Blue: Global exposure mortality model (GEMM)

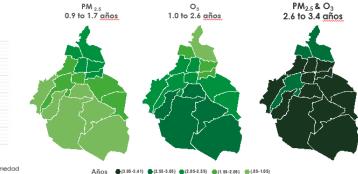
	lealth impact functions for c		RONIC exposure to air pollutants		
Air pollutant	Cause	Author and type of study	Risk ratio per 10 µg/m ³ of PM2.5 or 10 ppb of O₃	Age group	
	All-cause		1.08 (1.06–1.09)	. 0-99	
	lschemic heart disease (IHD)		1.16 (1.10–1.21)		
	Stroke	Chen & Hoek (2020)	1.11 (1.04–1.18)		
	Chronic obstructive pulmonary disease (COPD)	Meta-analysis	1.11 (1.05–1.17)		
PM2.5	Lung cancer (LC)		1.12 (1.07–1.16)		
	Lower respiratory infections		1.16 (1.01–1.34)		
	Non-Accidental and IHD, stroke, COPD, LC, LRI	Burnett et al (2018) Glonal exposure mortality model (GEMM)	Non-linear	25+	
	IHD, stroke, COPD, LC, LRI	Cohen et al (2017) Integrated exposure response model (IER)	Non-linear	30+	
		Jerret et al (2009)	1.029 (1.010-1.048)	30+	
Ozone	Respiratory / COPD	Cohort study in the US	Daily 1 h max - Seasonal mean	1 30+	
020110	Respiratory / COPD	Turner et al (2016) Cohort study in the US	1.12 (1.08–1.16) Daily 8 h max - Seasonal mean	30+	

Health impact functions for causes of death linked to ACUTE exposure to air pollutants						
Air pollutant	Cause	Author and type of study	Percentage change per 10 μ g/m ³ of PM2.5 or 5 ppb of O ₃	Age group		
PM2.5	All-cause (non-external)	Liu et al (2019)	499 cities: 0.68 (0.59 to 0.77) Mexico: 1.29 (0.21 to 2.39)	All ages		
(24 h mean)	Cardiovascular disease	Multi-city time series study	499 cities: 0.55 (0.45 to 0.66)			
	Respiratory disease		499 cities: 0.74 (0.53 to 0.95)			
	All-cause mortality	Orellano et al (2020) Meta-analysis	0.43 (0.34–0.52).	All ages		
	All-cause mortality	Di et al (2017) Cohort study in the US	0.28 (0.21-0.31)	All ages		
Ozone	Cardiopulmonary disease	Romieu et al (2013)	0.12 (0.01 to 0.22)			
(8 h max)	Cardiovascular disease	Multi-city time series study	0.15 (0.03 to 0.27)	≥65		
	Stroke	Values for Mexico City:	0.28 (0.03 to 0.53)			
	Total mortality (natural and non-external)	Vicedo-Cabrera et al (2020) Multi-location time series study	406 cities: 0.18 (0.12 to 0.24)	All ages		

e. Economic valuation – Value of statistical life


A "Pyramid of Effects" from Air Pollution

Mexico


Original country	Original VSL in USD	Year	Source	VSL in 2019 (USD PPP) if elasticity is 1:
USA	6,300,000	2007	Viscusi (2004)	3,062,307
USA	9,300,000	2014	US DHHS (2016)	3,712,151
OECD	3,000,000	2005	OECD (2012)	2,245,057
OECD	3,830,000	2011	OECD (2012)	2,414,191
Varios	5400000	2000	Kochi et al. (2006)	3,684,591
Brazil (Sao Paulo)	1,306,941	2003	Ariagoni et al. (2009)	1,414,987
Chile	4,625,958	2006	Parada et al. (2013)	8,030,108
México	227,947 USD PPP	2010	De Lima (2019)	322,642
México	325,000 USD PPP	2002	Hammitt & Ibarraran (2006)	650,358

4. Examples of HIA in Mexico City and the MCMA

AQ improvements in **Mexico City** in the period from 1990 to 2015 avoided 22 thousand premature deaths (PM2.5: 18,000; Ozone: 4,000) and led to an increase in life expectancy of 3.2 years.

However, 7,700 premature deaths occur every year due to air pollution in the **Mexico City Metropolitan Area (MCMA)** with a cost of 12,699 million USD.

infecciones respiratorias agudas.

Trejo et al (2018)

5. Recommendations for other cities

- Develop HIA to inform decision making.
- Start with a general/basic analysis and then go further in your analysis.
- Reach to and **collaborate** with local, national and international **institutions**.
- Work hand-in-hand with the **AQ monitoring/ modeling / data analysis team** at your institution, especially when developing complex and multiple datasets.
- **Document your analysis** to ensure transparency and allow replicability.
- Translate and communicate results to citizens and decision-makers.

Special thanks

Data scientists: Alberto Aguilar and Alejandro Ruiz

Thank you

monterostephanie.sedema@gmail.com