EKING UNION MEDICAL COLLEGE

Critically Ill Patients with COVID-19: China Experience

Bin Du, MD Medical ICU Peking Union Medical College Hospital

Conflicts of Interest

• None

Fact Sheet about COVID-19

WHO. Coronavirus (COVID-19). Available at https://who.sprinklr.com accessed April 14, 2020

Epidemic of Confirmed COVID-19 Cases

among 44,415 cases

mild cases 81%

Diagnostic Criteria severe

- hypoxemia (SpO₂ < 93%) @ RA critical
- hypoxemia requiring NIV/IMV
- shock
- other organ failure

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323: 1239-1242

Presenting Signs/Symptoms Chen et al Huang et al (n = 41)(n = 99)Fever **98%** (40) 83% (83) Cough 76% (31) **82%** (81) Shortness of breath or **55%** (22/40) **31%** (31) dyspnea Myalgia or fatigue 44% (18) **11%** (11) Diarrhea **3%** (1/38) **2%** (2)

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506 Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513

Clinical Course of Patients with COVID-19

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020

Acute kidney injury Acute cardiac injury

Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020

A Age (n = 1591)

Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred to the ICUs of the 72 hospitals between February 20 and March 18, 2020.

Clinical Features of Patients with COVID-19

		ICU	Cardiac				
Study	No.	adm	injury	Shock	NIV	IMV	CFR
Huang	41	32%	12%	7%	24%	5%	15%
Chen	99	23%		4%	13%	4%	11%
Wang	138	26%	7%	9%	11%	12%	
Guan	1099			1%	5.1%	2.3%	1%
Yang	52	100%	23%	35%	55.8%	42.3%	62%
Zhou	191	26%	17%	20%	14%	17%	28%
Chen	274		44%	17%	37%	6%	41%

Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med 2020

Respiratory Failure in Patients with COVID-19

	All Patients	ICU Patients
Prevalence of ARDS	17% to 41%	61% to 85%
HFNC	21% to 27%	63.5%
NIV	10.9% to 34%	41.7% to 62%
IMV	4% to 17%	30% to 47.2%
Prone positioning	2%	11.5%
ECMO	2.9% to 5%	11.1% to 15%

Acute Respiratory Failure in COVID-19

A Computed tomography images on day 5 after symptom onset

B Computed tomography images after treatment on day 19 after symptom onset

Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus - infected pneumonia in Wuhan, China. JAMA 2020; 323; 1061-1069

High Failure Rate of NIV/HFNC Trial

- Prolonged NIV/HFNC failure associated with high fatality
 - Even after invasive mechanical ventilation
- Criteria of NIV failure
 - Refractory hypoxemia
 - High tidal volume (> 9 ml/kg IBW) or inspiratory effort
 - Overt respiratory distress
- Prompt initiation of invasive mechanical ventilation highly recommended by WHO Interim Guidance
 - Within 2 hours vs. 1 to 2 days

WHO Interim Guidance on NIV/HFNC

- HFNO or NIV should only be used in selected patients with hypoxemic respiratory failure
- The risk of treatment failure is high in patients with MERS treated with NIV, and patients treated with either HFNO or NIV should be closely monitored for clinical deterioration

Severe Hypoxemia in COVID-19

- Refractory hypoxemia (PaO₂/FiO₂ < 100 mmHg) very common
 - Possibly due to delay of invasive mechanical ventilation
- Lung protective ventilation strategy
 - Heavy sedation and/or neuromuscular blockade necessary
 - Low tidal volume
 - PEEP with a double-edged sword effect
 - Improved PaO₂ at the cost of alveolar overdistention
 - 5 to 10 cmH₂O?

Severe Hypoxemia in COVID-19

- Rescue therapy
 - Recruitment maneuver
 - Effective in 80% of patients at early stage
 - Ineffective at late stage?
 - Prone positioning
 - Effective in almost all patients?
 - Even in patients with NIV/HFNC

Refractory Hypercapnia in COVID-19

- A finding at late stage?
 - Usually after the third week after symptom onset
 - $PaCO_2$ up to > 150 mmHg
- A sign of poor prognosis?
- Potential mechanism
 - Dead space ventilation
- Management
 - Partially resolved by adjusting minute ventilation, or prone positioning
 - Improved with disease resolution

COVID-19 vs. ARDS

	COVID-19	ARDS
Etiology	SARS-CoV-2	Infectious and noninfectious etiologies
Radiology	Ground glass opacity	Consolidation in dependent regions
Pathophysiology		
Нурохетіа	?	Intrapulmonary shunt
Hypercapnia	Dead space ventilation	Low tidal volume ventilation
Treatment		
Tidal volume	Low	Low
PEEP	< 5 (?) due to alveolar overdistention	High
Proning	Highly effective	Effective
RM	Effective only at early stage	Depending on etiology, radiographic features

Cardiac Injury in Patients with COVID-19

Prevalence of Cardiac Injury*

All Patients

ICU Patients

7% to 17% 22% to 31%

*defined as elevated biomarkers of cardiac injury

Hypersensitive cardiac troponin I (hscTnI)

up to **20,000+** pg/mL

Result of Viral Myocarditis?

Cardiac Injury in Patients with COVID-19

	Survivors (n = 137)	Nonsurvivors (n = 54)
hscTnI (pg/mL)	3,000 (1,100 – 5,500)	22,200 (560 - 83,100)
		P < 0.0001
hscTnI > 28,000 pg/mL	1% (1/95)	46% (23/50)
		P < 0.0001

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020

Cardiac Injury in Patients with COVID-19

	Survivors (n = 161)	Nonsurvivors (n = 113)
hscTnI (pg/mL)	3.3 (1.9 – 7.0)	40.8 (14.7 – 157.8)
> 15.6 pg/mL	14% (15/109)	72% (68/94)
NT-proBNP (pg/mL)	72.0 (20.0 – 185.0)	800.0 (389.8 – 1817.5)
> 285 pg/mL	18% (17/93)	85% (68/80)

Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091

Predictors of COVID-19 Hospital Mortality

Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020

Causes of Death in Patients with COVID-19

Prevalence of Shock

All Patients **4%** to **20%**

ICU Patients

23% to 31%

Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020

Acute Renal Injury in Patients with COVID-19

	All Patients	ICU Patients
Prevalence of AKI	3% to 15%	8.3% to 29%
CRRT	1.5% to 9%	5.6% to 23%

Critically III Patients with COVID-19

100

75-Survival probability (%) 50-25-Median duration from ICU admission to death was 7 (IQR 3-11) 0. 14 21 28 7 0 Time since admission to intensive care unit (days) Numbers at risk 51 28 39 22 21

Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020

Risk Factors for Mortality in COVID-19

	Univariate OR	Multivariate OR
Age, per year increase	1.14 (1.09 – 1.18)	1.10 (1.03 – 1.17)
	< 0.0001	0.0043
SOFA score, per 1 unit increase	6.14 (3.48 - 10.85)	5.65 (2.61 – 12.23)
	< 0.0001	< 0.0001
D-dimer \leq 0.5 μ g/L	1 (Ref)	1 (Ref)
D-dimer > 0.5 μg/L	1.96 (0.52 – 7.43)	2.14 (0.21 – 21.39)
	0.32	0.52
D-dimer > 1.0 μg/L	20.04 (6.52 - 61.56)	18.42 (2.64 – 128.55)
	< 0.0001	0.0033

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020

Critical Appraisal of Prediction Models

Table 2 | Risk of bias assessment (using PROBAST) based on four domains across 27 studies that created prediction models for coronavirus disease 2019

	Risk of bias				
Authors	Participants	Predictors	Outcome	Analysis	
Hospital admission in general population					
DeCaprio et al ⁸	High	Low	High	High	
Diagnosis					
Feng et al ¹⁰	Low	Unclear	High	High	
Lopez-Rincon et al ³⁵	Unclear	Low	Low	High	
Meng et al ¹²	High	Low	High	High	
Song et al ³⁰	High	Unclear	Low	High	

Box 2: Common causes of risk of bias in the 19 reported prediction models

Models to predict hospital admission for coronavirus disease 2019 (covid-19) pneumonia in general population

These models were based on Medicare claims data, and used proxy outcomes to predict hospital admission for covid-19 pneumonia, in the absence of patients with covid-19. $^{\rm 8}$

Diagnostic models

People without covid-19 (or a proportion of them) were excluded, altering the disease prevalence.³⁰ Controls had viral pneumonia, which is not representative of the target

Proposed models are poorly reported, at high risk of bias, and their reported performance is probably optimistic. The predictors identified in included studies could be considered as candidate predictors for new models.

Lineng et al	oncical	oneicai		
Prognosis				
Bai et al ⁹	Low	Unclear	Unclear	High
Caramelo et al ¹⁸	High	High	High	High
Gong et al ³²	Low	Unclear	Unclear	High
Lu et al ¹⁹	Low	Low	Low	High
Qi et al ²⁰	Unclear	Low	Low	High
Shi et al ³⁷	High	High	High	High
Xie et al ⁷	Low	Low	Low	High
Yan et al ²¹	Low	High	Low	High
Yuan et al ²²	Low	High	Low	High

PROBAST=prediction model risk of bias assessment tool.

*Risk of bias high owing to calibration not being evaluated. If this criterion is not taken into account, analysis risk of bias would have been unclear.

tRisk of bias high owing to calibration not being evaluated. If this criterion is not taken into account, analysis risk of bias would have been low.

specifically designed, without benchmarking the used architecture against others. Prognostic models

Study participants were often excluded because they did not develop the outcome at the end of the study period but were still in follow-up (that is, they were in hospital but had not recovered or died), yielding a highly selected study sample.^{720,22} Additionally, only one study accounted for censoring by using Cox regression.¹⁹ One study developed a model to predict future severity using cross sectional data (some participants were severely ill at inclusion)³⁷; this implies that the timing of the measurement of the predictors is not appropriate and the (unclearly defined) outcome might have been influenced by the predictor values. Other studies used highly subjective predictors,²² or the last available predictor wasurement from electronic health records (rather than measuring the predictor value at the time when the model was intended for use).²¹

Wynants L, van Claster B, Bonten M, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ 2020; 369: m1328

Corticosteroids in COVID-19

- Widely used in critically ill patients
 - Without systematic evaluation

All Patients ICU Patients **10%** to **45% 46%** to **72%**

- Prolonged corticosteroid therapy associated with prolonged viral shedding
 - Delayed but more severe deterioration (e.g. hypoxemia)?
- Short-term corticosteroid therapy beneficial?

Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020

Take Home Message

- Global outbreak of COVID-19
- Critically ill patients characterized by acute respiratory failure, cardiac injury/shock, and acute kidney injury
- Supportive therapies as cornerstone in patient management
- High mortality rate associated with organ injury